Leroux, Marcel (1993). The Mobile Polar High:=Lunar declinational tides

Paul Vaughan says:
July 2, 2011 at 10:35 am
Dave Springer wrote (July 2, 2011 at 6:59 am)
“There is a chicken-egg paradox that remains controversial. The controversy is whether weather drives rotation rate changes or rotation rate change drives the weather. Either way there is strong correlation between changing winds and changing rotation rate. Winds are definitely a big factor in SST oscillations. […] heretofore I was unaware of a connection between earth rotation rate and wind patterns. Rotation rate changes are so small I thought it could be ignored for all practical matters. I’m still not convinced it shouldn’t be ignored.”

There’s no controversy here Dave. It has been known for decades that pole-equator contrasts induced by the seasons drive the westerlies and hence atmospheric angular momentum and changes in length of day. If your objective is to know what time it is, go ahead and ignore the changes, but if your objective is to understand terrestrial climate, see the following:
Leroux, Marcel (1993). The Mobile Polar High: a new concept explaining present mechanisms of meridional air-mass and energy exchanges and global propagation of palaeoclimatic changes. Global and Planetary Change 7, 69-93.

Please take however much time is necessary to understand. The discussion cannot advance until people make the effort to understand the basics.

My reply; If you read the paper by Leroux he has found and well defined the actions of the air masses, that make up a typical lunar declinational tidal bulge. The Mobile Polar Highs are the polar component of the resultant tidal bulges and the equatorial air masses he thought were pushed by the polar highs are actually pulled off of the meteorological equator or “ITCZ”. The slow and fast phases he eludes to are the result of the 18.6 year variation of the declinational angle at culmination with reference to the equator.

Reading his paper and substituting Lunar tidal bulge (LTB) for MPH, he very accurately describes the whole range of topographical effects of the orthographic forcing of the global circulation projected on the various topographical features. Rossby saw the zonal flows and jet streams as the feature of primary interest, where Leroux saw the pulses of turbulent meridional flow aspects of the Lunar tidal effects on the atmospheric circulation.

Neither of them looked at the orbital dynamics of the Moon and its close ties to the patterns seen on the surface, and still the mainstream is ignorant of the patterns and timing of the global circulation, that can be forecast from including the reference point of the lunar declinational tidal effects. For over 20 years now no one has made the connection between these studied and accepted dynamics, to the real driver the Moon.

Now the current political agenda has every one focused on demonic CO2, and still no one can look up and see the moon for what it does, The big lie that was told, “the moon has no effect on the weather” repeatably to switch the focus of funding from cyclic studies to Numerical models, has been as complete as they are now trying to do with CO2 based climate models. For the same reason you cannot tax the moon, and models are cleaner and safer than doing research outside.

The answer is still the same the solar/lunar connection to the global circulation is most of the natural variability, most of the rest is the modulation of the SSN/solar CME/ flare activity as a result of the electromagnetic influences of the outer planets acting on the sun and inner planets movement about the SSB. Many times the answers have been found but not referenced to the drivers causing the effects, so are still not understood as to total effects to the point of being able to predict weather or climate. It is only through finding the drivers and patterns of their influences will we be able to forecast more that 10 days out into the future.

Filed under: In other online forums,Long-term Lunar Effects,Natural Processes,Supporting Research — by Richard Holle @ 3:05 am on July 3, 2011


Adelaide on Jul 20, 2011 at 12:01 pm

HHIS I should have tuhohgt of that!

Leave a Comment